Executive Summary

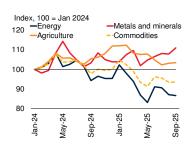
Commodity prices are expected to decline by about 7 percent overall this year, reflecting subdued global economic activity, elevated trade tensions and policy uncertainty, and ample global supply of oil. In 2026, commodity prices are forecast to fall by a further 7 percent, a fourth consecutive year of decline, as global growth remains sluggish and the oil market oversupplied. Energy price movements are expected to continue contributing to global disinflation in 2026. Metals and minerals prices are projected to remain stable in 2026, while agricultural prices are forecast to edge down, primarily due to strong supply conditions. Precious metals prices are projected to rise another 5 percent, after a historically large, investment-driven rally of about 40 percent in 2025. Risks to the commodity price projections are tilted to the downside. Key downside risks include weakerthan-expected global growth, a longer-than-assumed period of economic policy uncertainty, and additional oversupply of oil. Upside risks include intensifying geopolitical tensions, the market impact of additional oil sanctions, supply reductions stemming from additional trade restrictions, unfavorable weather conditions, and faster-than-expected rollout of new data centers. Commodity price volatility in recent years has revived interest in supply management via international commodity agreements. Historical experience, however, shows that the most effective policy is to promote diversification, innovation, transparency, and market-based pricing—measures that build lasting resilience to commodity price volatility.

Recent developments

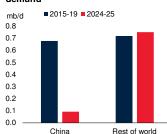
Commodity markets have been impacted by a confluence of factors over the past six months, leaving prices below 2024 levels. Continued subdued economic activity, trade restrictions and associated high economic policy uncertainty, and weather-related supply shocks have all affected commodity markets. Energy prices, in particular, have pulled down the World Bank Group's overall commodity price index (figure 1.A). The softening of commodity prices in nominal U.S. dollars would have been larger without the depreciation of the dollar since early 2025.

In energy markets, the announcement of a new set of U.S. sanctions on Russian oil companies in late October was followed by spike in oil prices. Prior to recent events, Brent oil prices declined by 14 percent in the first nine months of the year (y/y), reflecting an oversupplied market and sluggish global growth. Over the past two years, oil demand growth in China, a key source of demand, has been sharply below its 2015-19 average, weighing on prices, while growth in the rest of the world has been broadly steady (figure 1.B). Increasing oil production by eight OPEC+ members since April, on top of continued strong gains in non-OPEC countries, has put additional downward pressure on prices. The U.S. benchmark for natural gas prices rose by 64 percent in

the first nine months of the year (y/y) as European demand for U.S. liquified natural gas (LNG) surged due to reduced electricity output from renewable sources and efforts to build stocks.


Recent developments in base metals markets have been shaped by evolving trade policy and economic conditions in China. Metal prices recovered in 2025Q3 after declining earlier in the year, reflecting resilient demand in major economies. In the lead-up to the U.S. tariffs, importers front-loaded purchases of aluminum and copper, contributing to short-term market tightening. For copper, accelerated shipments to the United States lifted onshore inventories ahead of the August tariffs and widened the price spread between the COMEX and LME exchanges (figure 1.C). In addition, an accident at one of the world's largest mines in September caused a spike in copper prices. Iron ore prices rebounded in the third quarter, supported by expectations of record-high steel exports and a temporary pickup in Chinese steel production, despite a prolonged downturn in the property sector.

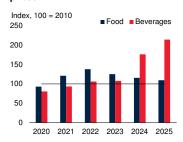
Among precious metals, for which prices have risen for eight consecutive quarters, gold has surged to successive record highs in the second half of 2025 on strong investment demand due to its safe-haven status amid elevated geopolitical uncertainty, macroeconomic factors such as recent

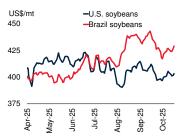

FIGURE 1 Recent developments in commodity markets

Commodity prices have fallen since the beginning of 2025, largely driven by lower energy prices. A sharp decline in oil prices in 2025 reflects sluggish oil demand growth in China and excess global supply. Market anticipation of tariffs led to unusually wide price differentials across major copper exchanges for several months in 2025. Gold prices surged to successive record highs in the second half of the year, largely reflecting safe-haven demand. Food prices have continued to edge down, while beverage prices experienced a sharp, weather-related spike in the first half of the year.

A. Commodity prices

B. Average annual increase in oil demand


C. Copper prices


D. Gold and silver prices

E. Food and beverage commodity prices

F. Benchmark soybean prices

Sources: Bloomberg; International Energy Agency (IEA); World Bank.

Note: COMEX = The Commodity Exchange; LME = London Metal Exchange;

mb/d = million barrels per day; mt = metric ton; RHS = right-hand side; toz = troy ounce.

- A. Indexes show prices in U.S. dollars. Last observation is September 2025. B. Annual difference in oil demand for China and the rest of the world, based on IEA's *Oil Market Report*, October edition.
- C. Last observation is October 17, 2025.
- D. Dotted lines show averages of gold and silver prices (blue and red lines, respectively) for 2019-21.
- E. Prices are in U.S. dollars. Food commodities include oils and meals, grains, and other food (bananas, beef, chicken, oranges, shrimp, and sugar). Beverage commodities include cocoa, coffee, and tea. For 2025, bars show indexes based on data for January through September.
- F. Three-day rolling averages. Last observation is October 17, 2025.

U.S. monetary easing, and heightened policy uncertainty, reinforced by a weaker U.S. dollar (figure 1.D). Silver prices have also risen to record levels, reflecting the metal's dual roles as a safe-haven asset and a key input in fast-growing renewable energy applications. Geopolitical uncertainty and a weakening U.S. dollar were also factors behind the last major surge in gold prices, in 1979-80, but a distinguishing feature of the current rally is the unprecedented pace of gold purchases by central banks.

In food commodity markets, prices edged down for the third consecutive quarter in 2025Q3 (q/q), driven by marked declines in grain prices—notably rice, wheat, and maize—amid ample global supplies (figure 1.E). Soybeans, however, have been the target of fresh trade restrictions that have curtailed U.S. exports to China while significantly increasing export opportunities for producers in Argentina and Brazil, contributing to a substantial gap between benchmark soybean prices in the United States and Brazil (figure 1.F). Although beverage commodity prices have retreated in recent months, prices of coffee remain close to all-time highs reached in early 2025, when weather-related challenges suppressed production.

Fertilizer prices have continued to climb, by 19 percent in the first nine months of 2025 (y/y), reflecting strong demand, the effects of trade restrictions, and production shortfalls. Combined with lower grain prices, higher fertilizer costs have reduced profits for many agricultural producers.

Outlook

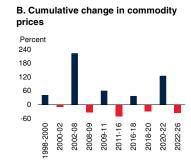
The broadest index of commodity prices is projected to drop by 7 percent in 2025 (y/y) in nominal U.S. dollar terms and by a further 7 percent in 2026, before rebounding by 4 percent in 2027 (table 1). Energy prices are expected to decline considerably in 2025 and 2026, although by far less than during the COVID-19 pandemic or the mid-2010s commodity price drop, while projected changes in non-energy prices are comparatively small (figure 2.A). For both years, price

¹ The forecasts do not reflect announced but not yet implemented policies.

forecasts have been upgraded since April, owing largely to global activity that has been more resilient than expected. The forecast for 2026 is predicated on the continuation of two major forces—subdued global economic growth and an oversupplied global oil market—as well as on the assumption of generally ample supplies of agricultural and metal commodities.

If realized, the baseline 2026 price forecast would mark the fourth consecutive year of decline, and a 36 percent drop from the most recent peak in 2022, following a surge of about 125 percent from 2020 to 2022 (figure 2.B). The outlook implies that commodity prices would still be about 14 percent higher in 2026 than they were in 2019, before the pandemic.

Energy


The World Bank Group's energy price index is expected to fall by 12 percent in 2025 (y/y) and by an additional 10 percent in 2026, before rising by 6 percent in 2027. The 2026 energy price forecast assumes that weakening oil prices will outweigh a projected rise in natural gas prices stemming from accelerating gas consumption. The Brent oil price is forecast to average \$68/bbl (per barrel) in 2025, a sharp decline from \$81/bbl in 2024, and to average \$60/bbl in 2026. The oil price forecast envisages a continued slowdown in oil consumption growth, reflecting very weak demand growth in China, continued rapid adoption of electric and hybrid vehicles, and a further rise in global oil supply (figure 2.C). Excess supply in the global oil market has expanded significantly in 2025 and is expected to rise next year to 65 percent above the most recent high, in 2020 (figure 2.D).

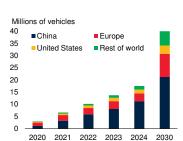
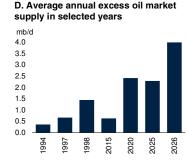

Natural gas prices in the United States, Europe, and Asia are expected to diverge during the forecast period. After surging by an estimated 60 percent in 2025, mainly owing to a sharp increase in LNG imports from Europe, the U.S. benchmark price is projected to rise by a further 11 percent in 2026, before holding steady in 2027. The European benchmark price is expected to rise by 10 percent in 2025 but decline by about 11 in 2026 and 9 percent in 2027, as plans for the European Union to phase out purchases of natural gas from Russia proceed. The benchmark LNG

FIGURE 2 Commodity market outlook


Commodity prices are projected to decline by 7 percent in 2026 as energy prices fall further. If realized, the anticipated drop in commodity prices in 2026 would mark the fourth consecutive year of decreases, although it follows a two-year spike in prices during the pandemic. In the oil market, continued excess supply, together with the rising adoption of electric vehicles and the subsequent reduction in demand for oil, are expected to keep downward pressure on prices.

A. Commodity price forecasts Index, 100 = 2010 —Energy -Metals and minerals -Agriculture -Commodities 120 100 80 60 40

C. Electric vehicle sales

Sources: International Energy Agency (IEA); Energy Information Administration (EIA); World Bank. A. Commodity prices line refers to the World Bank's commodity price index, excluding precious metals. Indexes show prices in nominal U.S. dollars. Dashed lines indicate forecasts.

- B. Bars show compound annual price changes in the World Bank's commodity price index, in nominal U.S. dollars, during periods of continuous annual increase and decrease. Prices for 2025 and 2026 are forecasts.
- C. Data are based on the IEA's *Global EV Outlook 2025 Report*. Data for 2030 are IEA forecasts. D. mb/d = million barrels per day. Bars show size and timing of average estimated annual implied oil market balance greater than 0.3 mb/d since 1991. Positive values indicate an excess of supply over demand. Data are based on the October edition of IEA's *Oil Market Report*.

price in Japan is also projected to decline in 2026 and 2027, on growing global LNG production.

After falling by an estimated 21 percent in 2025 (y/y), the Australian benchmark coal price is anticipated to fall by a further 7 percent in 2026. This forecast reflects expectations of subdued global growth, adequate supply conditions, and rising diffusion of renewable energy sources.

Agriculture and fertilizers

The World Bank Group's agricultural commodity price index is projected to fall slightly, by 2 percent in 2026 (y/y) and 1 percent in 2027, after

holding steady in 2025. Food commodity prices, including all three sub-components—grains, oils and meals, and other foods—are forecast to fluctuate within narrow ranges around recent levels, as supply growth for key crops returns to long-term trends. Soybean prices are anticipated to drop in 2025, as U.S. supply that typically goes to China must be sold to other buyers at lower cost. The price of soybeans, a product at the center of ongoing trade restrictions between major economies, is forecast to be relatively stable in 2026 and 2027. Lower prices are anticipated to curtail the area under cultivation in the United States, while Brazil is on track to expand its soybean acreage. Beverage prices are forecast to drop by 7 percent in 2026 and about 5 percent in 2027, owing mainly to an expected improvement in supply conditions for coffee and cocoa.

Fertilizer prices are projected to rise by 21 percent in 2025 (y/y), on strong demand, trade constraints, and isolated supply shortfalls. Although fertilizer prices are expected to ease by about 5 percent in 2026 and again in 2027, they are set to remain well above their 2015–19 average due to elevated input costs and ongoing export restrictions and sanctions. China has restricted exports of nitrogen and phosphate fertilizers, while Belarus—a major potash supplier—remains under EU sanctions. Together with Russia, it is also subject to new EU tariffs on fertilizers.

Metals and minerals

The index of metals and minerals prices tracked by the World Bank Group is projected to be essentially flat (y/y) in 2026 and to rise by a moderate 2 percent in 2027, following a 3 percent increase in 2025, as rising demand related to investment in renewable energy, electric vehicles, and grid infrastructure offsets the drag from weak industrial activity and policy uncertainty.

Base metals prices are forecast to rise by less than 1 percent (y/y) in 2026 and about 3 percent in 2027, following an estimated 5 percent increase in 2025. The prices of copper and tin—critical for clean energy—are projected to reach new record levels in nominal U.S. dollar terms. Iron ore prices, however, are expected to fall below 2019 levels as China's property downturn continues.

Following a rally to record-setting levels in 2025 on continued strong investment demand, precious metal prices are set to rise further in 2026. Gold prices are projected to reach levels about 180 percent above their 2015-19 average in 2026, supported by continued (though easing) central bank purchases and expectations of further U.S. monetary easing, amid still-elevated geopolitical risks and policy uncertainty. Silver prices are also expected to reach new record highs, supported by safe-haven and industrial demand.

Risks

Risks to the baseline commodity price projections remain tilted to the downside. Slower-than-expected global output growth—perhaps stemming from resurgent trade tensions, renewed policy uncertainty, or weaker-than-expected economic conditions in major economies—remains a substantial risk that could weigh on the demand for energy and metals, pushing prices below baseline forecasts. Further oversupply in the oil market is another key downside risk.

There are also upside risks to the commodity price outlook, including a deterioration in geopolitical conditions or increased sanctions, both of which could disrupt supplies of oil and other commodities, and lead to increased demand for precious metals. Other upside risks include new trade restrictions and supply disruptions, especially for energy-transition metals like copper and tin, where production is geographically concentrated and demand price-inelastic. Extreme weather events, such as a stronger-than-anticipated La Niña, could also trigger price spikes across agricultural and energy commodities, while stronger-than-expected investment in data centers could push up prices of natural gas and metals.

Downside risks

Slower global growth

Global economic growth could fall short of the baseline if there are increased trade tensions or rising trade policy uncertainty. The resulting shortfall would particularly affect demand for energy and metals, which is closely linked to fixed investment and durable goods consumption. A

deeper slowdown in China, perhaps stemming from continued weakness in the property sector or export-oriented manufacturing activity, could place even greater downward pressure on base metal prices.

Oil market oversupply

The oil market could become significantly over-supplied due to rising non-OPEC+ production, notably from the U.S. shale industry. Oil prices at or below the baseline forecasts for 2025 and 2026 are likely to restrain the drilling of new wells in the U.S. shale sector, but prices are still far above the levels required to cover the average operating expenses of existing wells, indicating that production could exceed assumptions. Similarly, a larger-than-expected increase in OPEC+ output could result from further reversals of approximately 3 mb/d of announced cuts still remaining or from accelerated implementation of planned production increases, although some of the increases have been hindered by capacity constraints.

Upside risks

Additional geopolitical tensions and sanctions

Oil and precious metals markets, in particular, remain sensitive to geopolitical developments, including active conflicts and attacks on oil infrastructure. The market impact of additional sanctions, such as the recently announced U.S. sanctions on Russian oil companies, could raise oil prices above the baseline forecast. The impact of sanctions will depend on the extent to which buyers are willing to risk breaching them, the secondary measures in place for those engaging with sanctioned parties, and the extent to which sanctioned parties can find alternate buyers. For precious metals, including gold and silver, escalation of trade tensions, inflationary pressures, financial market stress, or armed conflict could lift prices higher than projected.

Additional trade and production restrictions

Metals have been increasingly subject to trade restrictions in recent months, including the 50 percent U.S. tariff on semi-finished copper

products introduced in August and new U.S. tariffs on aluminum and steel imposed earlier in the year. These new restrictions add to earlier measures, including EU curbs on Russian aluminum, Indonesia's ban on exports of copper and nickel ores, and Myanmar's tin export taxes. Further supply restrictions could push prices above projections and widen divergences across price benchmarks. Relatedly, disruptions from regulatory changes, shifts in policy priorities, or operational challenges that constrain supply could lift prices above projections, particularly for energy-transition metals with geographically concentrated production and price-inelastic demand.

Adverse weather conditions

A stronger-than-expected La Niña could bring weather that is hotter and drier than normal to major agricultural-producing regions, including Argentina, southern Brazil, and the U.S. Gulf Coast (figure 3.A). This could compromise the production of major staples such as maize, wheat, and soybeans and push prices above forecasts. La Niña could also cause flooding or landslides in key producing countries in East and South Asia, disrupting the planting season for rice and other crops. In energy markets, colder-than-expected winter temperatures in the Northern Hemisphere could put upward pressure on prices through both increased consumption and reduced supply from frozen gas fields. Meanwhile, heatwaves could increase electricity demand for air conditioning while reducing output, driving up prices of oil, coal, and alternative sources such as hydropower. Additionally, periods of intense rainfall could restrict coal mining.

Faster-than-expected expansion in data centers

The ongoing boom in artificial intelligence (AI) investment has resulted in a rapid surge in the construction of data centers, which is expected to continue in the medium term. A faster-than-expected diffusion of AI could increase demand for electricity, especially in China, Europe, and the United States, and consequently put upward pressure on natural gas to support additional electricity production. At the same time, infra-

FIGURE 3 Risks and broader implications of the commodity price outlook

Weaker-than-expected global growth remains a key downside risk to the commodity price outlook. A stronger-than-expected La Niña could hinder production of several agricultural commodities, pushing up prices of maize, wheat, soybeans, and rice. Rapid rollout of generative AI (artificial intelligence) could push up prices of natural gas, used to fuel additional electricity production, and of copper and aluminum, used in data center infrastructure. The baseline outlook suggests that energy prices will continue contributing to global disinflation in 2026, although there are downside and upside risks to the forecast.

A. Strength of El Niño and La Niña

B. Direct contribution of energy prices to global inflation

Sources: National Oceanic and Atmospheric Administration (NOAA); Organisation for Economic Co-operation and Development; World Bank.

Note: ENSO = El Niño Southern Oscillation: f = forecast.

A. The ENSO Index represents a centered three-month mean sea surface temperature anomaly for the Niño 3.4 region (5°N-5°S,120°-170°W). According to the U.S. National Oceanic Atmospheric Administration (NOAA), events are defined as five consecutive overlapping three-month periods at or above the +0.5°C anomaly for El Niño events and at or below the +0.5° anomaly for La Niña events. Horizontal lines indicate the +0.5°C and -0.5°C anomaly. Last observation is July 2025. B. GDP-weighted annual average direct contributions of energy prices to headline CPI inflation, based on data for up to 34 countries (29 advanced economies and 5 EMDEs, excluding China and Türkiye). Values for 2025-27 are estimated using an OLS regression of energy contributions to inflation on current and lagged changes in energy commodity prices.

structure related to the faster-than-expected uptake of AI could push up prices of copper and aluminum.

Broader implications

Fiscal policy

For oil-importing economies, lower oil prices create space for policy makers to reallocate public expenditures. In particular, the decline in oil prices reduces the need for fuel subsidies and presents an opportunity to shift expenditures to cash transfers to households, which are more targeted and typically less costly than subsidies, or to growth-enhancing investment in health, education, and investment in infrastructure and climate-related priorities. Budgetary resources released by reduced expenditures on subsidies could also be used to accumulate fiscal buffers, which in many economies are limited.

Inflation

Consumer price inflation has fallen closer to central bank targets in most countries over the past year. However, in recent months, it has flattened or even edged up in some advanced economies, while continuing to recede in emerging market and developing economies (EMDEs).

Commodity price movements have supported disinflation since 2023, with decreases in energy prices, in particular, exerting downward pressure both directly through consumer energy costs and indirectly through their impact on goods prices. In the baseline forecast, energy price movements will help reduce consumer price inflation in 2026, shaving about 0.2 percentage point from global inflation in 2026, slightly less than the 0.3 percentage point estimated for 2025 (figure 3.B).

Food security

Falling prices of food commodities in 2025—especially rice, but also for wheat and certain fruits—are likely to have helped improve the affordability of basic foods in some EMDEs. However, country-specific factors, including conflicts and economic developments, mean that changes in global prices do not consistently pass through to domestic prices.

The Food and Agriculture Organization estimates that the number of people facing hunger globally will decline modestly in 2025, to 634 million, from 673 million at end-2024. This decline, however, follows several consecutive annual increases in the number of people facing hunger.

Crop yields

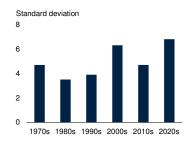
Fertilizer prices have increased nearly every month in 2025, reaching a level in 2025Q3 about 30 percent higher than a year earlier. In contrast, food commodity prices have declined so far this year, and in 2025Q3 were 5 percent lower than a year earlier. This divergence, with costs of important inputs rising while output prices fall, has eroded many farmers' profit margins. As a result, farmers, especially those with limited access to finance, may reduce fertilizer application rates in the 2025-26 season, potentially lowering crop yields.

Special focus

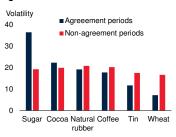
New shocks, old tools: Revisiting commodity agreements in a fragmented world

Commodity price volatility in recent years—driven by geopolitical tensions, trade policy uncertainty, pandemic-induced supply chain disruptions, and shifts in energy use—has sparked interest in coordinated market interventions (figure 4.A). There is a long history of international commodity agreements that attempt to target price levels or limit boom-and-bust cycles. These arrangements have used a variety of interventions, including inventory controls, trade restrictions, production quotas, and even price setting.

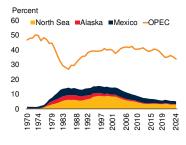
Early efforts, mostly in the 1920s and 1930s, sought to influence price movements in coffee, tea, sugar, wheat, wool, rubber, copper, tin, aluminum, and silver markets, among others. Although some arrangements were temporarily successful at stabilizing prices, none were longlasting, and in many cases their collapse intensified price volatility (figure 4.B). Several post-World War II agreements involving both producers and consumers applied to tropical agricultural commodities (coffee, sugar, cocoa), as well as to wheat, rubber, and tin. Like their predecessors, none of these agreements remained successful for long, although several agreements evolved into organizations that continue to monitor market developments and facilitate information sharing.

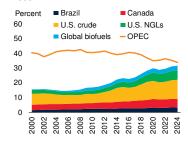

For oil, the Organization of the Petroleum Exporting Countries (OPEC), formed in 1960, is the most successful and enduring collective effort to coordinate production and control prices. Yet even OPEC has faced challenges in maintaining its intended market power amid competition from nonmember suppliers, changing consumer behavior, and shifts in energy use. Pressure from other suppliers has been particularly evident during periods of high oil prices (figures 4.C and 4.D).

Historical experience with international commodity agreements offers cautionary lessons for current proposals to form industrial cartels or manage global food inventories. Temporary interventions during acute disruptions can be effective, but


FIGURE 4 Commodity price volatility and commodity agreements

Commodity price volatility since 2020 has been higher than during the previous five decades, and is one of the reasons underlying renewed interest in international commodity agreements. Historically, the success of such agreements in containing price volatility has been mixed: volatility was lower for wheat and tin during the years agreements were active, higher for sugar, and little different for four other commodities. OPEC (the Organization of the Petroleum Exporting Economies) has been the sole producer group to endure. Yet even OPEC has faced pressure from new sources of production, especially during periods of high oil prices.


A. Volatility of overall commodity price index


B. Price volatility during periods with and without international commodity agreements

C. Sources of global oil production, 1970-2024

D. Sources of global oil production, 2000-24

Sources: Baffes, Nagle, and Streifel (2024); The Energy Institute; International Energy Agency; World Bank.

Note: NGLs = natural gas liquids; OPEC = Organization of the Petroleum Exporting Countries.

A. Bars show mean standard deviation of monthly price changes in the composite commodity index by decade, spanning data from January 1970 to September 2025. The commodity index measures prices in U.S. dollars.

B. Price changes reflect year-on-year logarithmic change, expressed in absolute terms. The periods during which agreements were in effect are given in table SF.2.

C. The North Sea region refers to Norway and the United Kingdom.

D. U.S. crude oil and NGLs predominantly originate from shale, while Canadian production is largely derived from bitumen and oil sands, and Brazil's output is mainly from offshore sources.

sustained price management schemes have a poor record, often leaving participants more vulnerable. Experience instead points to a more resilient approach: fostering diversification and production efficiency, investing in technology and innovation, improving data transparency, and relying on market-based pricing mechanisms. Such measures offer more durable protection against commodity price volatility than attempts to control prices and markets directly.

TABLE 1 World Bank Group's commodity price forecast (nominal U.S. dollars)

	-				•					,	Differences in levels	
							Percent change from previous year			from April 2025 projections		
Commodity	Unit	2023	2024	2025f	2026f	2027f		2025f	2026f	2027f	2025f	2026f
INDEXES (in nominal U.S. doll	ars, 2010 = 10	0)										
Total ¹		108.0	105.1	97.4	90.7	94.0		-7.4	-6.8	3.6	5.3	3.0
Energy ²		106.9	101.5	88.9	79.9	84.9		-12.4	-10.2	6.2	5.1	1.0
Non-Energy		110.2	112.5	114.4	112.7	112.5		1.8	-1.6	-0.2	5.6	7.3
Agriculture		110.9	115.0	115.2	112.7	111.8		0.2	-2.2	-0.8	1.2	2.4
Beverages		107.8	176.4	207.8	193.0	183.9		17.8	-7.2	-4.7	-3.3	5.1
Food		125.4	115.8	108.8	108.5	109.3		-6.1	-0.3	8.0	1.1	1.7
Oils and Meals		118.9	106.9	103.7	103.3	103.6		-3.0	-0.4	0.3	4.1	3.3
Grains		133.0	112.9	100.7	100.8	102.8		-10.8	0.1	2.0	-0.3	0.9
Other food		127.2	130.4	122.9	122.2	122.8		- 5.7	-0.6	0.5	-1.4	0.3
Raw Materials		77.1	81.6	83.5	82.1	81.2		2.3	-1.7	-1.0	3.7	2.7
Timber		79.1	79.6	82.0	83.3	84.1		3.0	1.5	1.0	2.7	2.3
Other raw materials		74.9	83.9	85.1	80.8	78.1		1.5	-5.1	-3.4	4.6	3.1
Fertilizers		153.5	117.6	142.2	134.9	127.8		20.9	-5.1	-5.3	16.1	10.1
Metals and Minerals ³		104.0	106.7	109.8	110.1	112.0		2.9	0.3	1.7	13.6	16.8
Base Metals ⁴		109.0	114.1	119.7	120.7	123.7		4.9	0.9	2.5	16.2	19.8
Precious Metals 5		147.3	180.2	254.2	268.2	251.8		41.1	5.5	-6.1	14.6	30.8
PRICES (in nominal U.S. dolla	rs)											
Energy												
Coal, Australia	\$/mt	172.8	136.1	107.0	100.0	105.0		-21.4	-6.5	5.0	7.0	5.0
Crude oil, Brent	\$/bbl	82.6	80.7	68.0	60.0	65.0		-15.7	-11.8	8.3	4.0	0.0
Natural gas, Europe	\$/mmbtu	13.1	11.0	12.1	10.8	9.8		10.4	-10.7	-9.3	0.5	0.2
Natural gas, U.S.	\$/mmbtu	2.5	2.2	3.5	3.9	3.9		59.7	11.4	0.0	0.2	0.5
Liquefied natural gas, Japan	\$/mmbtu	14.4	12.8	12.5	11.5	10.5		-2.7	-8.0	-8.7	0.0	0.0
Non-Energy												
Agriculture												
Beverages												
Cocoa	\$/kg	3.28	7.33	8.00	7.50	7.00		9.1	-6.3	-6.7	0.00	0.50
Coffee, Arabica	\$/kg	4.54	5.62	8.30	7.25	6.90		47.6	-12.7	-4.8	-0.20	0.00
Coffee, Robusta	\$/kg	2.63	4.41	4.80	4.70	4.60		8.7	-2.1	-2.1	-0.70	-0.30
Tea, average	\$/kg	2.74	3.04	2.90	2.95	3.00		-4.6	1.7	1.7	0.40	0.20
Food												
Oils and Meals												
Coconut oil	\$/mt	1,075	1,519	2,505	2,254	1,985		64.9	-10.0	-11.9	705	504
Groundnut oil	\$/mt	2,035	1,796	1,655	1,537	1,602		-7.8	-7.1	4.2	-30	-133
Palm oil	\$/mt	886	963	1,020	1,051	1,062		5.9	3.0	1.0	0	11
Soybean meal	\$/mt	541	442	351	336	343		-20.6	-4.3	2.1	-19	-33
Soybean oil	\$/mt	1,119	1,022	1,158	1,175	1,158		13.3	1.5	-1.4	168	208
Soybeans	\$/mt	598	462	405	410	416		-12.4	1.2	1.5	23	24
Grains												
Barley	\$/mt			171	174	175			1.8	0.6	-9	-10
Maize	\$/mt	253	191	198	195	197		3.9	-1.5	1.0	11	12
Rice, Thailand, 5%	\$/mt	554	588	406	401	409		-31.0	-1.2	2.0	-15	-21
Wheat, U.S., HRW	\$/mt	340	269	249	258	267		-7.3	3.6	3.5	-14	-2

Differences in levels

TABLE 1 World Bank Group's commodity price forecast (nominal U.S. dollars) (continued)

							Percent change from previous year			from April 2025 projections	
Commodity	Unit	2023	2024	2025f	2026f	2027f	2025f	2026f	2027f	2025f	2026f
PRICES (in nominal U.S. do	ollars)										
Non-Energy											
Other Food											
Bananas, U.S.	\$/kg	1.60	1.23	1.06	1.04	1.07	-14.0	-1.9	2.9	-0.10	-0.20
Beef	\$/kg	4.90	5.93	6.76	6.82	6.91	14.0	0.9	1.3	0.90	0.90
Chicken	\$/kg	1.53	1.46	1.69	1.70	1.71	15.5	0.6	0.6	0.30	0.30
Oranges	\$/kg	1.57	2.26	1.53	1.52	1.45	-32.3	-0.7	-4.6	-0.40	-0.30
Shrimp	\$/kg	10.19		8.60	9.00	9.47		4.7	5.2	-0.40	-0.50
Sugar, World	\$/kg	0.52	0.45	0.38	0.37	0.37	-15.3	-2.6	0.0	0.00	0.00
Raw Materials											
Timber											
Logs, Africa	\$/cum	379	379	390	395	400	3.0	1.3	1.3	0	0
Logs, S.E. Asia	\$/cum	212	197	200	210	215	1.7	5.0	2.4	0	0
Sawnwood, S.E. Asia	\$/cum	678	697	720	725	730	3.4	0.7	0.7	30	25
Other Raw Materials											
Cotton	\$/kg	2.09	1.91	1.70	1.75	1.80	-11.0	2.9	2.9	0.00	0.10
Rubber, TSR20	\$/kg	1.38	1.75	1.77	1.80	1.85	0.9	1.7	2.8	-0.20	-0.10
Tobacco	\$/mt	5,016	5,899	6,400	5,600	5,000	8.5	-12.5	-10.7	1100	600
Fertilizers											
DAP	\$/mt	550	564	710	650	600	26.0	-8.5	-7.7	110	100
Phosphate rock	\$/mt	322	153	155	160	165	1.6	3.2	3.1	0	0
Potassium chloride	\$/mt	383	295	350	330	320	18.6	-5.7	-3.0	40	15
TSP	\$/mt	480	475	585	540	500	23.3	-7.7	-7.4	115	75
Urea, E. Europe	\$/mt	358	338	440	410	375	30.1	-6.8	-8.5	50	35
Metals and Minerals											
Aluminum	\$/mt	2,256	2,419	2,580	2,600	2,700	6.7	8.0	3.8	405	500
Copper	\$/mt	8,490	9,142	9,700	9,800	10,000	6.1	1.0	2.0	1500	1800
Iron ore	\$/dmt	120.6	109.4	98.0	94.0	90.0	-10.4	-4.1	-4.3	3	6
Lead	\$/mt	2,136	2,069	1,970	1,975	2,000	-4.8	0.3	1.3	-60	-25
Nickel	\$/mt	21,521	16,814	15,300	15,500	16,000	-9.0	1.3	3.2	-500	-500
Tin	\$/mt	25,938	30,066	33,000	34,000	34,500	9.8	3.0	1.5	2000	2500
Zinc	\$/mt	2,653	2,776	2,800	2,750	2,700	0.9	-1.8	-1.8	300	375
Precious Metals											
Gold	\$/toz	1,943	2,388	3,400	3,575	3,375	42.4	5.1	-5.6	150	375
Silver	\$/toz	23.4	28.3	38.0	41.0	37.0	34.4	7.9	-9.8	5.0	7.0
Platinum	\$/toz	966	955	1,230	1,275	1,300	28.8	3.7	2.0	180	200

Source: World Bank.

^{1.} The World Bank's commodity total price index is composed of energy and non-energy prices (excluding precious metals), weighted by their share in 2002-04 exports. The energy index's share in the overall index is 67 percent.

^{2.} Energy price index includes coal (Australia), crude oil (Brent), and natural gas (Europe, Japan, U.S.).

^{3.} Base metals plus iron ore.

^{4.} Includes aluminum, copper, lead, nickel, tin, and zinc.

^{5.} Precious metals are not part of the non-energy index.

f = forecast.